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Under the assumption of Callaway’s model of the Boltzmann-Peierls equation, the Chapman-Enskog method
for a phonon gas forms the basis to derive various hydrodynamic equations for the energy density and the drift
velocity of interest when normal processes dominate over resistive ones. The first three levels of the expansion
�i.e., the zeroth-, first-, and second-order approximations� are satisfactory in that they are entropy consistent
and ensure linear stability of the rest state. However, the entropy density contains a weakly nonlocal term, the
entropy production is a degenerate function of variables, and the next order in the Chapman-Enskog expansion
gives the equations with linearly unstable rest solutions. In the context of Burnett and super-Burnett equations,
a similar type of problem was recognized by several authors who proposed different ways to deal with it. Here
we report on yet another possible device for obtaining more satisfactory equations. Namely, inspired by the fact
that there exists no unique way to truncate the Chapman-Enskog expansion, we combine the Chapman-Enskog
procedure with the method of variable transformation and subsequently find a class of �-dependent transfor-
mations through which it is possible to derive the second-order equations possessing a local entropy density
and nondegenerate expression for the entropy production. Regardless of this result, we also show that although
the method cannot be used to construct linearly stable third-order equations, it can be used to make the
originally stable first-order equations asymptotically stable.
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I. INTRODUCTION

The Chapman-Enskog method as applied to a phonon gas
provides a solution to the Boltzmann-Peierls equation �1,2�
in which the distribution function is expressed in the form of
a power series in the small parameter �. Several temperature
ranges may be defined according to the relation between the
effective relaxation times for normal and resistive processes
�3�. In the case when normal processes dominate over resis-
tive ones, from the solution of the Boltzmann-Peierls equa-
tion using this method it is possible to derive various nonlin-
ear systems of hydrodynamic equations for the energy
density and the drift velocity �4,5�. These systems are non-
linear because no limitations were introduced on the magni-
tudes of the individual components of the drift velocity or
the heat flux. For one-dimensional flow problems, restricting
attention to Callaway’s model of the collision operator �6�
and assuming nondispersion and isotropy in the frequency
spectrum, it was explicitly demonstrated that the first three
levels of the expansion �i.e., the zeroth-, first-, and second-
order approximations� yield the equations of hydrodynamics
which are linearly stable at all wavelengths. The next order
in the Chapman-Enskog expansion leads to equations which
are unstable to some perturbations. More explicitly, the lin-
earized equations of motion that describe the propagation of
small disturbances in the flow have unstable plane-wave so-

lutions in the short-wavelength limit of the dispersion rela-
tions �5�.

Similar problems are encountered when considering ideal
monoatomic gases described by the Boltzmann equation.
There, the results of the computations made for Maxwellian
molecules and rigid spheres show that the usual Chapman-
Enskog procedure does not work already at the level of Bur-
nett equations �the next step after the Navier-Stokes equa-
tions� �7,8�. Precisely speaking, the second-order Burnett
approximation implies that sufficiently short acoustic waves
are increasing with time instead of decaying. As explained
by Bobylev �9,10�, the main reason for the existence of this
short-wavelength instability is a violation of the condition
ensuring that the matrix of the coefficients for third spatial
derivatives has only real eigenvalues. This condition is not
fulfilled in most typical cases, the prominent exception being
the case of Burnett equations derived from the standard
Bhatnagar-Gross-Krook model �11�. Due to the difficulties
associated with the Burnett equations as described above,
several modified approaches have been suggested by many
investigators in the last two decades �12–18�. These ap-
proaches are mostly based on a combination of the
Chapman-Enskog method with moment methods and on us-
ing some higher order in � terms for regularization of the
Burnett equations. However, the recent method of Bobylev
�9,10� does not use any information beyond the Burnett level
of approximation and is based on the following concept of
transformation of variables. Namely, this concept is enlarged
to encompass the situation where the transformation opera-
tors themselves depend explicitly on the small parameter �.
The power series expansions of these operators offer four
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advantages: �i� they yield the transformation of variables in a
more explicit form; �ii� in a function of the original variables,
substitution of the new variables consists simply of an itera-
tive procedure involving only explicit chains of commuta-
tors; �iii� the inverse transformation can be built exactly the
same way; �iv� there exist the transformation operators such
that the Burnett equations formulated in terms of the new
variables are linearly stable at all wavelengths.

Note that, besides Bobylev’s two papers mentioned
above, the idea to see how the Chapman-Enskog procedure
may change with a change in variables was also studied in
the two papers by Colangeli et al. �19,20�. These authors
discussed a simple kinetic model, namely, the linearized
Grad’s 13 moment equations. Their approach is based on a
dynamic invariance principle which gives exact constitutive
relations for the stress tensor and heat flux, and a transfor-
mation which makes the exact equations of hydrodynamics
stable and consistent with the second law of thermodynam-
ics.

Proceeding along the lines suggested by Bobylev �9,10�,
the aim of this paper is to study the issue of stability of the
first-, second-, and third-order phonon hydrodynamic equa-
tions derived via the Chapman-Enskog method combined
with �-dependent transformation of variables. As a starting
point, we consider the infinite system of moment equations
consistent with, and equivalent to, Callaway’s model of the
Boltzmann-Peierls equation. For one-dimensional flow prob-
lems, this system is linearized near the equilibrium state �i.e.,
the state with zero background drift velocity�, assuming that
the effective relaxation time for normal processes is much
smaller than the effective relaxation time for resistive pro-
cesses. The Chapman-Enskog expansion in terms of the
small parameter � on such moment equations yields the sys-
tems of linear partial differential equations for describing the
dynamics of small departures of the phonon gas from its
equilibrium state. An important observation is that these sys-
tems are not unique because the result of truncation at each
order in � depends on the definition of the perturbation vari-
ables. In our previous paper �5�, this definition was standard,
which means that it was independent of the small parameter
�. Consequently, truncation at the levels O��1� and O��2�
implied stability of the equilibrium state, but not the exis-
tence of a nondegenerate local H theorem. Here we show
that by using the Chapman-Enskog method combined with a
variable transformation approach, it is possible to derive the
equations which possess the property of yielding such an H
theorem. Regardless of this result, we also study the problem
of boundary conditions in order to show that the above ap-
proach can be used to make the originally stable first-order
equations asymptotically stable. Matters are quite comfort-
able up to this point but when we go to higher orders, we
first encounter the equations associated with the super-
Burnett level of approximation. Since these equations are
unstable and the equations after transformation are also un-
stable, we must conclude that the method does not avoid the
failures of stability.

The layout of this paper is as follows. Under the assump-
tion of the one-dimensional rotationally symmetric geometry,
Sec. II is devoted to a treatment of the more relevant aspects
of Callaway’s model. Section III introduces the moment

equations corresponding to Callaway’s model; these equa-
tions are subsequently linearized around the equilibrium
state. Section IV describes the Chapman-Enskog procedure.
Section V considers the idea of change in variables. Section
VI states the initial-boundary value problem for Eq. �5.1�
with p=1 and subsequently discusses the notion of
asymptotic stability for this equation. The Appendix defines
the spaces used in Sec. VI.

Throughout our work, we employ units which are defined
by setting �=kB=1. For the sake of simplicity, we use the
Boltzmann-Peierls equation with Callaway’s collisional
term. The discussion is mostly restricted to the case when the
effective relaxation time for normal processes is a constant
quantity and the effective relaxation time for resistive pro-
cesses equals infinity �21�. No distinction is made between
longitudinal and transverse phonons. The dispersion relation
has the form �D=c�k�, where c is the constant Debye speed.
We let the components �ki�= �k1 , . . . ,kn� of the wave vector k
range from −� to �. As to the value of n in �k1 , . . . ,kn�, we
consider exclusively the spacetime whose spatial dimension
is either two or three; thus it is assumed that n=2 or n=3.

II. KINETIC MODEL

The basic equation of phonon kinetic theory is the
Boltzmann-Peierls equation �1�. Assuming the one-
dimensional rotationally symmetric geometry, this equation
governs the time evolution in phase space of the distribution
function f�t ,x , �k� ,kx� describing the number of phonons at
position x having wave number in the x direction kxªk1 and
is given as

�t f + cg�xf = JR�f� + JN�f� ,

where g� �−1,1� is the x component of k / �k�,

g ª kx/�k� = �k1/��k1�2 + �k2�2 if n = 2,

k1/��k1�2 + �k2�2 + �k3�2 if n = 3,
�

and JR�f� and JN�f� stand for the collision terms due to re-
sistive and normal processes, respectively. For the sake of
simplicity, we consider only the relaxation-time model of the
collision terms. As discussed by Callaway �6�, this involves
the use of JR�f� and JN�f� of the form

JR�f� =
1

�R
�F0 − f�, JN�f� =

1

�N
�F − f�

as the starting point. Here ��R ,�N� are the effective relaxation
times for resistive and normal processes, which we assume
are the constant quantities, and �F0 ,F� are the equilibrium
and displaced Planck distributions defined by

F0 ª
y

exp�ck/T0� − 1
, F ª

y

exp��ck/T��1 − vg�� − 1
,

where

y ª n�2��−n, k ª �k�, − 1 � v � 1.

The functions T0=T0�t ,x� and T=T�t ,x� represent two differ-
ent temperature fields and the function v=v�t ,x� represents
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the dimensionless drift velocity of a phonon gas. We fix these
functions so as to reproduce the actual energy density e
=e�t ,x� and the actual heat flux q=q�t ,x�:

c	 kF0dnk = c	 kFdnk = e ª c	 kfdnk , �2.1a�

c2	 kxFdnk = q ª c2	 kxfdnk . �2.1b�

Conditions �2.1� make it possible to relate T0 to e and �T ,v�
to �e ,q�.

Now, observing that f�t ,x , �k� ,kx� can also be written as
f�t ,x ,k ,kg�, it will be convenient to introduce the distribu-
tion function which depends on �t ,x ,g� and does not depend
on k:

	 ª c�	
0

�

knf�t,x,k,kg�dk . �2.2�

We call 	 the reduced distribution function. With the aid of
Eq. �2.2�, using the notation


0 ª c�	
0

�

knF0dk, 
 ª c�	
0

�

knFdk ,

the relaxation-time model yields the following equation for
	:

�t	 + cg�x	 =
1

�R
�
0 − 	� +

1

�N
�
 − 	� . �2.3�

Conditions �2.1� transform to

2�n − 1�	 
0dg = 2�n − 1�	 
dg = e ª 2�n − 1�	 	dg ,

�2.4a�

2�n − 1�c	 g
dg = q ª 2�n − 1�c	 g	dg , �2.4b�

where

	 F�g�dg ª

1

2�3−n	
0

�4−n��

F�cos ��sinn−2 �d� ,

with g given by g=cos �.
As in Ref. �5�, we take Eq. �2.3� with the formal small

parameter � inserted:

�t	 + cg�x	 =
�

�R
�
0 − 	� +

1

��N
�
 − 	� . �2.5�

This form of the equation for 	 may serve as a basis for
developing the Chapman-Enskog procedure of interest when
normal processes dominate over resistive ones. Finally, we
use the constant relaxation time �N and the constant Debye
speed c to nondimensionalize the time and space coordinates
according to

t = �Nt�, x = c�Nx�.

Thus, Eq. �2.5� is equivalent to

�t�	 + g�x�	 = ���
0 − 	� +
1

�
�
 − 	� , �2.6�

where �ª�N /�R. The primes on t and x will be omitted in
the sequel.

III. MOMENT EQUATIONS

A. General form

The equations for �e ,v� emerging from Eqs. �2.4� and
�2.6� are of the form

�te +
�n + 1�v

n + u
�xe +

�n + 1��n − u�e
�n + u�2 �xv = 0, �3.1a�

�tv +
n�1 − u�2

�n + 1��n − u�e
�xe +

2�n − 3�v + �3n − 1�uv
n2 − u2 �xv

+
�n + u�2

�n + 1��n − u�e
�e�x
2 + 
2�xe� = −

���n + u�v
n − u

,

�3.1b�

where uªv2 and 
2 represents the dimensionless second-
order moment of 	−
:


2 ª
2�n − 1�

e
	 
g2 −

1

n
��	 − 
�dg . �3.2�

We define the dimensionless first-, third-, and higher-order
moments of 	−
 as


1 ª
2�n − 1�

e
	 g�	 − 
�dg ,


k ª
2�n − 1�k!

e�2k + n − 4� ! !
	 wk�	 − 
�dg , �3.3�

where

k ! ª 1 � 2 � 3 � ¯ � k ,

�2k + n − 4� ! ! ª �2 � 4 � 6 � ¯ � 2k − 2 if n = 2,

1 � 3 � 5 � ¯ � 2k − 1 if n = 3,
�

wk ª �
l=0

�k/2�

�− 1�l �2k − 2l + n − 4� ! !

2ll ! �k − 2l�!
gk−2l.

Here �k /2� means the largest integer less than or equal to
k /2. It is evident from Eq. �2.4b� that 
1=0. If now the
dimensionless functions of v are introduced, defined by

�1 ª
�n + 1�v

n + u
, �2 ª

�n + 1�2u

6�n + u�
,

�k ª
nk ! ��1 − u�n+3

�n + u��2k + n − 4� ! !
	 wk

�1 − vg�n+1dg �k � 3� ,

it can be checked by straightforward if tedious working that
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�t
k +
1

e
��k + 
k��te +

d�k

dv
�tv

+
k2

4k2 − n + 2

�x
k−1 +

1

e
��k−1 + 
k−1��xe +

d�k−1

dv
�xv�

+ �x
k+1 +
1

e
��k+1 + 
k+1��xe +

d�k+1

dv
�xv

= − ����k + 
k� −
1

�

k �k � 2� . �3.4�

The system comprised of Eqs. �3.1� and �3.4� is formally
equivalent to Eq. �2.6�. Explaining more precisely the mean-
ing of �k, this quantity is a function of v such that when
�v��1, then �k is O�vk�. The interpretation of �1+
1,
�2+
2, and �k+
k �k�3� is that these are the moments of 	
derived from Eq. �3.2� or Eq. �3.3� by replacing 	−
 with 	.

B. Linearization

We now linearize Eqs. �3.1� and �3.4� about a constant
equilibrium solution. This solution is given by

e = e� ª const � 0, v = v� ª 0, 
k = 
k� ª 0.

The perturbation variables y1 and y2 are introduced as

e = e��1 + y1�, v = y2.

Then linearization in the deviation from equilibrium yields
the following system of equations for y1, y2, and 
k:

�ty1 +
n + 1

n
�xy2 = 0, �3.5a�

�ty2 +
1

n + 1
�xy1 +

n

n + 1
�x
2 = − ��y2, �3.5b�

�t
k +
k2

4k2 − n + 2
��x
k−1 + �k−1�xy� + �x
k+1 = − 
�� +

1

�
�
k,

�3.5c�

where k�2 and y, �k are the column and row vectors defined
by

y ª �y1,y2�T, �k ª ��0,�n + 1�/n� if k = 1,

�0,0� if k � 2.
�

Here we recall that 
k−1=0 when k=2.
In what follows consideration is first given to the

Chapman-Enskog expansion of system �3.5� with �=0. Next
the situation is described in which system �3.5� is taken with
��0.

IV. CHAPMAN-ENSKOG EXPANSION

A. Overall structure

The types of solutions to system �3.5� obtained by the
Chapman-Enskog method are a very special class of solu-
tions, called normal solutions, in which the time and spatial

dependence of 
k�t ,x� appear implicitly through the pertur-
bation variables and their spatial derivatives:


k = 
k�y,�xy,�x
2y, . . . ,�x

�y ;�� �k � 2� . �4.1�

For the case �=0, assuming that the dependence on � is as a
power series, we postulate the following form of Eq. �4.1�:


k = �
l=1

�

�l
k�l�x
l y , �4.2�

where 
k�l is a constant row vector,


k�l ª �
k�l�1�,
k�l�2�� ,

and 
k�l�x
l y is a vector product defined by


k�l�x
l y ª 
k�l�1��x

l y1 + 
k�l�2��x
l y2.

We also postulate that the equation for y takes the form

�ty = − �
l=0

�

�lQl�x
l+1y , �4.3�

where Q0 ,Q1 , . . . ,Q� are the constant 2�2 matrices. A little
algebra, aided by the substitution of


2 = �
l=1

�

�l
2�l�x
l y

into the left-hand side of Eq. �3.5b�, shows that

Q0 = � 0
n + 1

n

1

n + 1
0 �, Ql = � 0 0

n
2�l�1�

n + 1

n
2�l�2�

n + 1
� �l � 1� .

�4.4�

Then, using the notation

�k�l ª �
m=1

l


k�mQl−m,

the time derivative of 
k can be evaluated; it turns out to be

�t
k = − �
l=1

�

�l�k�l�x
l+1y . �4.5�

Proceeding formally, we substitute expansions �4.2�, �4.3�,
and �4.5� into Eq. �3.5c� and equate coefficients of powers of
�. With the understanding that 
1�lª0, we obtain


2�1 = −
4

18 − n
�0,�n + 1�/n�, 
k�1 = �0,0� �k � 3� ,

�4.6a�


k�l+1 = �
m=1

l


k�mQl−m − 
k+1�l −
k2

4k2 − n + 2

k−1�l

�k � 2,l � 1� . �4.6b�

From Eq. �4.6� we get a set of recurrence relations for the
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evaluation of 
k�l. Equations �4.4� and �4.6a� can be used to
find Q1, and having 
k�1, Q1, and Eq. �4.6b�, we can find 
k�2,
and so on. Also, each matrix Ql can be successively com-
puted from Eq. �4.4� by solving the recurrence equations. In
Sec. IV B, we return to this derivation for more details.
Clearly, in order to obtain a manageable system of equations,
the infinite set �
k�l ;k�2, l�1� has to be truncated. If we
truncate at pth order, we find the equation

�ty = − �
l=0

p

�lQl�x
l+1y , �4.7�

which is an approximation based on the knowledge of

2�1 ,
2�2 , . . . ,
2�p. The equations with p=1, p=2, and p=3
correspond to truncation at first, second, and third order, re-
spectively.

When ��0, the situation is as follows. The power series
expansions of 
k and �ty are expressible as


k = �
l=1

�

�
m=0

l

�l
k�l
�m��x

my , �4.8�

�ty = − �Qy − �
l=0

�

�
m=0

l

�lQl�m�x
m+1y , �4.9�

where


k�l
�m�

ª �
k�l�1�
�m� ,
k�l�2�

�m� �, Q ª 
0 0

0 �
� ,

Q0�0 ª � 0
n + 1

n

1

n + 1
0 �, Ql�m ª � 0 0

n
2�l�1�
�m�

n + 1

n
2�l�2�
�m�

n + 1
� ,

�4.10�

with l�1 and m� l. Working in a way analogous to the case
�=0, we first find that


k�l
�0� = �0,0� �k � 2,l � 1� , �4.11a�


2�1
�1� = −

4

18 − n
�0,�n + 1�/n�, 
k�1

�1� = �0,0� �k � 3� ,

�4.11b�


2�l
�m� = �0,0� �1 � l � 3,m � l� . �4.11c�

However, in order to list the explicit form of further equa-
tions, the recurrence equations, we require the following for-
mal extension to the definition of 
k�l

�m�:


k�l
�m�

ª �0,0� �k � 2,m � l � 0� ,


1�l
�m�

ª �0,0� �l � 1,m � l� ,

Ql�m ª 
0 0

0 0
� �m � l � 0� .

Note that this extension is consistent with Eqs. �4.8�–�4.11�
and the relations below. The use of Eqs. �3.5c�, �4.8�, and
�4.9� then yields


k�l+1
�m+1� = �k�l

�m� + 
k�l−1
�m+1�Q − �
k�l−1

�m+1� − 
k+1�l
�m�

−
k2

4k2 − n + 2

k−1�l

�m� �k � 2,l � 1,m � l� ,

�4.12�

where

�k�l
�m�

ª �
r=1

l

�
s=0

m


k�r
�s�Ql−r�m−s.

The equation for y can be approximated as

�ty = − �Qy − �
l=0

p

�
m=0

l

�lQl�m�x
m+1y

and result �4.11c� introduces a great simplification into this
approximation. It implies that if p�3, then

�ty = − �Qy − �
l=0

p

�lQl�l�x
l+1y . �4.13�

Here the matrices Ql�l have exactly the same meaning as in
Eq. �4.4�; i.e., these matrices satisfy the conditions Ql�l=Ql.
Departures from the expansion of system �3.5� with �=0
may therefore be expected when p�4.

All the above assumes, either explicitly or implicitly, the
following picture �22�. If � is sufficiently small, then Eqs.
�3.5a�, �3.5b�, and �3.5c� define a fast-slow system. This sys-
tem has a manifold of slow motion M� in the state space X.
Each state corresponds to a unique point in X and is repre-
sented by a sequence 
ª �y ,
k �k�2� composed of continu-
ous and differentiable functions of x. There exists a function
�� whose graph is a slow manifold M�:

���y� ª ��
l=1

�

�
m=0

l

�l
k�l
�m��x

my ;k � 2� .

This manifold is locally invariant under the system dynamics
and the dynamics on M� is governed by Eq. �4.9�.

B. Some explicit calculations

Equations �4.4� and �4.6� give
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Q0 = � 0
n + 1

n

1

n + 1
0 �, Q1 = �0 0

0 −
2�n − 1�
n�n + 2�

� ,

Q2 = � 0 0

−
1

3�n + 2�
0 � . �4.14�

For Q3, the solution is more complex; it reads

Q3 = dQ1, �4.15�

where

d ª

2�13n + 46�
�7n − 6��38 − n�

� 0. �4.16�

To evaluate Q0�0, Q1�1, Q2�2, and Q3�3 it need only be recalled,
as found at the end of Sec. IV A, that Ql�l=Ql for l�3. In
other words, to the extent the equation for y is calculated up
to order 3 in �, see Eq. �4.13� with p�3, all the differences
between Eqs. �4.6� and �4.12� can be ignored:


k�l−1
�m+1�Q − �
k�l−1

�m+1� = 0 �� � 0,l = 1,2� .

Nevertheless, it is important to stress that the matrix Q is not
a zero matrix when ��0. Consequently, even if we assume
that p�3, Eq. �4.13� may differ from Eq. �4.7�.

C. Entropy

Let h0 be the 2�2 symmetric positive-definite matrix de-
fined in such a way that the matrix h0Q0 is symmetric and the
matrix −h0Q1 is symmetric and positive semidefinite:

�0 ª h0Q0 = �h0Q0�T, �1 ª − 2h0Q1 = − 2�h0Q1�T � 0.

�4.17�

The solution of Eq. �4.17� for h0 is unique up to multiplica-
tion by a positive constant and from Eq. �4.14� we find h0 to
be

h0 = � n2

�n + 1�2 0

0 n
� . �4.18�

Then h0�0 and by Eq. �4.17�,

�0 = � 0
n

n + 1

n

n + 1
0 �, �1 = �0 0

0
4�n − 1�

n + 2
� . �4.19�

The matrix �1 is positive semidefinite, but not positive defi-
nite. In this sense, the matrix �1 is degenerate and leads to a
degenerate expression for the entropy production � as de-
fined below.

In an attempt to formulate the H theorem for the third-
order equation

�ty = − Q0�xy − ��Qy + Q1�x
2y� − �2Q2�

3y − �3Q3�x
4y ,

�4.20�

where Q ,Q0 , . . . ,Q3 are defined by Eqs. �4.10�, �4.14�, and
�4.15�, it is natural to aim for simplicity by introducing the
matrices

�2 ª h0Q2 + �h0Q2�T, �2 ª h0Q2 − �h0Q2�T.

Explicitly, we obtain

�2 = � 0 −
n

3�n + 2�

−
n

3�n + 2�
0 � ,

�2 = � 0
n

3�n + 2�

−
n

3�n + 2�
0 � .

It is also convenient to introduce the following symmetric
positive-semidefinite matrix:

h2 ª � n2

3�n + 1��n + 2�
0

0 0
� .

Now, define the gradient-dependent entropy by

H ª yTh0y + �2��xy�Th2�xy . �4.21�

This quantity is a non-negative quadratic form that vanishes
if and only if

y = �0,0�T, �xy = �0,�xy2�T.

Differentiating H with respect to time and using Eq. �4.20�
yields

�tH + �x� = � , �4.22�

where

� ª yT�0y − �yT�1�xy + �2yT��2 + �2��x
2y − �2��xy�T�2�xy

− �3yT�3�x
3y + �3��xy�T�3�x

2y , �4.23a�

� ª − �yTQy − ���xy�T�1�xy + �3��x
2y�T�3�x

2y ,

�4.23b�

with �3 given by

�3 ª − h0Q3 − �h0Q3�T = d�1. �4.24�

It is evident from Eqs. �4.16�, �4.17�, and �4.24� that �3�0.
From a physical point of view, it may seem that the en-

tropylike quantity H is postulated ad hoc. However, at least
in the case of a first-order approximation to Eq. �4.20�,

�ty = − Q0�xy − ��Qy + Q1�x
2y� ,

it is possible to relate H directly to the second differential of
the true entropy density. For more details, see Banach and
Larecki ��5�, Sec. VI�. Let
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V ª 	
R

H�t,x�dx, P ª 	
R

��t,x�dx .

Assuming that y�t ,x� decays fast enough if �x�→�, we arrive

at the equation V̇= P. The lack of evidence that V̇�0 follows
from the fact that �3�0.

These are our previous results �5� and we briefly summa-
rize them as follows. There exist the 2�2 matrices h0 and h2
such that

h0 = �h0�T � 0, h2 = �h2�T � 0, �0 = ��0�T,

�1 = ��1�T � 0.

For this reason, truncation at order �2 gives the equations
which satisfy the H theorem and possess the property of
yielding stable constant solutions. However, since the matrix
�3 is not negative semidefinite, the equations corresponding
to the next order of approximation exhibit instability to small
wavelength disturbances and are inconsistent with thermody-
namics in the sense that the nonpositivity of � is not auto-
matically guaranteed for all possible conditions of the pho-
non gas. As an illustration, the substitution of Eq. �4.24� into
Eq. �4.23b� and the use of Eqs. �4.10�, �4.19�, and �4.24� lead
to

� = − ���y2�2 −
4��n − 1�

n + 2
��xy2�2 +

4�3d�n − 1�
n + 2

��x
2y2�2,

then Eq. �4.16� implies that ��0 if, e.g., y2=�xy2=0 and
�x

2y2�0.

V. VARIABLE TRANSFORMATION APPROACH

A. Preliminaries

In Sec. IV A, the state variable 
 is represented in the
standard basis of X:


 ª �y,
k�k � 2� .

In this section, we consider a different coordinate system in
X,


 ª �z,
k�k � 2� ,

and derive the equation for z that governs the dynamics on
M�. We note that the idea of special transformation for the
proper fast-slow separation is not new in kinetics. Similar
ideas were invented for chemical kinetics by Lam and Gous-
sis �23� and developed further by many researches �24�. They
call this method the “computational singular perturbation.”
For our purposes, it suffices to implement a reduced �one-
step� version of the method. The transformation is the same
at every point of X. Moreover, this transformation is simple
in that it changes only the slow variables.

Consider the system

�ty = − �
l=0

p

�lQl�x
l+1y

derived in Sec. IV A under the assumption that Q=0. The
essence of the technique proposed here consists in construct-

ing a linear differential transformation �y ,���z analytic in �
at �=0 so as to achieve in the transformed system

�tz = − �
l=0

p

�lRl�x
l+1z �5.1�

specific requirements �stability of the zero solution, existence
of a local H theorem, elimination of the degenerate expres-
sion for the entropy production, and so on�. We propose to
build the transformation in the power series form

z = y + �
l=1

�

�lYl�x
l y , �5.2�

where Y1 ,Y2 , . . . ,Y� are the constant 2�2 matrices. The in-
verse transformation is given by

y = z + �
l=1

�

�lZl�x
l z , �5.3�

where

Z1 = − Y1, Zl = − Yl − �
m=1

l−1

YmZl−m �l � 2� .

The scheme is basically a recursive one; it is based on the
principle that, with respect to transformation �5.2�, system
�4.3� is equivalent to the system

�tz = − �
l=0

�

�lRl�x
l+1z �5.4�

derived from the equation

�tz = �ty + �
l=1

�

�lYl�x
l �ty

by using Eqs. �4.3� and �5.3�. The matrices Rl are therefore

R0 = Q0, R1 = Q1 + Y1Q0 − Q0Y1,

Rl = Ql + YlQ0 − Q0Yl + �
m=1

l−1

�YmQl−m − Q0YmZl−m�

+ �
m=1

l−1 
Qm + �
r=1

m

YrQm−r�Zl−m �l � 2� . �5.5�

In this way, the complete specification of system �5.4� is
obtained, which enables access to further development op-
portunities. The transformation defined by Eq. �5.2� is ca-
nonical, in the sense that system �5.4� has the same form as
system �4.3�.

If we repeat the construction for system �4.9� with Q�0,
then we find that the transformation does not satisfy the cri-
terion of canonicity. Consequently, insofar as the explicit de-
scription of a theory of transformations is concerned, we
restrict ourselves to the case Q=0 and do not present the
sequence of operations one has to perform when Q�0.
Clearly, under this restriction, system �4.9� reduces to the
system comprised of Eqs. �4.3� and �4.4�.
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We end this subsection with the remark explaining what
does truncation in new variables mean for original series: if
one transforms y to z, then truncates the series for time de-
rivative for z, and returns back to y, then how will the equa-
tions for y look like? For mathematical convenience, we as-
sume that our perturbation variables are harmonic in space
and time. So we have, effectively,

y = yk exp�i�t − ikx�, z = zk exp�i�t − ikx� , �5.6�

where � is the wave frequency, yk is the complex amplitude
of y, and zk is the complex amplitude of z. The wave number
k will be regarded as real throughout. Let I be the unit matrix
and let

M ª I + �
l=1

p

�l�− ik�lZl.

Substitution from Eq. �5.6� into

y = z + �
l=1

p

�lZl�x
l z

gives

yk = Mzk �5.7�

and the substitution of Eq. �5.6� into Eq. �5.1� gives

i�zk = − �
l=0

p

�l�− ik�l+1Rlzk. �5.8�

Equations �5.7� and �5.8� combine into

i�yk = − �
l=0

p

�l�− ik�l+1MRlM
−1yk, �5.9�

which puts in evidence the fact that we do not arrive at Eq.
�4.7� when Yl�0 and p��.

In order to illustrate these remarks with a specific ex-
ample, we consider Eq. �5.9� with p=1. Defining Y1 by Eq.
�5.12�, we find, after a little algebra, that

�yk�1� −
n + 1

n
kyk�2� = 0,

�yk�2� −
1

n + 1
kyk�1� −

2�n − 1�i
n�n + 2�

�k2yk�2�

−
2�n − 1��1 − d�d

3�n + 2�2 �2k3yk�1� = 0,

where d is the numerical parameter and yk�1� and yk�2� are the
components of yk. The equation for y is therefore

�ty = − Q0�xy − �Q1�x
2y − �2�2Q2�x

3y ,

where

�2 =
2�n − 1��1 − d�d

n + 2
.

This equation is stable as long as 0�d�1. So we have
found a one-parameter family of equations of the second-
order theory with linear stability.

B. H theorem

The second-order approximation to Eq. �5.4� results in the
following equation for z:

�tz = − R0�xz − �R1�x
2z − �2R2�x

3z , �5.10�

where R0 and R1 are given by Eq. �5.5� and R2 is given by

R2 = Q2 + Y2Q0 − Q0Y2 − �Y1Q0 − Q0Y1�Y1 + Y1Q1 − Q1Y1.

Suppose h0 takes form �4.18�. Also, define Y1 and Y2 in such
a way that

�1 ª − 2h0R1 = − 2�h0R1�T � 0, �2 ª h0R2 − �h0R2�T = 0.

�5.11�

For the sake of concreteness, we define Y1 and Y2 by

Y1 = � 0 0

nd

3�n + 2�
0 �, Y2 = � �n − 1��

n�n + 2�
0

0 0
� , �5.12�

where

0 � d � 1, � = − 1 +
2�n − 1��1 − d�d

n + 2
. �5.13�

This yields

�1 = �
2n2d

3�n + 1��n + 2�
0

0
4�n − 1��1 − d�

n + 2
�

and then the matrix �1 is positive definite—exactly as it
should be. Because of Eq. �5.13�, the uncertainty in the defi-
nition of Eq. �5.10� is reduced to the numerical parameter d
in Eq. �5.12�. The entries of R1 and R2 become functions of
d and we obtain

R0 = Q0, R1 = R̂1�d�, R2 = R̂2�d� . �5.14�

Equation �5.10� with Eq. �5.14� seems to be the most natural
replacement for Eq. �4.7�. Its nonuniqueness is unavoidable
unless some additional restrictions are introduced to specify
d. The natural defining relation for d is the condition that the
matrix �1 is the unit matrix multiplied by a constant. This
evidently implies

0 � d =
�n + 1�2

1 + 3n + n2 � 1

and then the constant is positive.
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Using Eq. �5.11� and observing that

R0 = Q0, h0R0 = �h0R0�T, �5.15�

the equation analogous to Eq. �4.22� holds with Eqs. �4.21�
and �4.23� replaced by

H ª zTh0z ,

� ª zT�0z − �zT�1�xz + �2zT�2�x
2z −

1

2
�2��xz�T�2�xz ,

�5.16a�

� ª − ���xz�T�1�xz , �5.16b�

where

�0 ª h0R0, �2 ª 2h0R2.

Explicitly, differentiating Eq. �5.16a� with respect to time,
making use of Eqs. �5.10� and �5.11�, and noting Eq. �5.15�,
we obtain the balance law for H—the second law—as

�tH + �x� = � . �5.17�

The important thing to keep in mind is that H is a local
function of z and that � satisfies the inequality ��0 with
equality if and only if �xz=0. As a matter of fact, the impli-
cations of the simple Eqs. �5.16a� and �5.16b� can be put
most vividly in the common case for which z�t ,x��0. For
then Eq. �5.17� gives

d

dt
	

R
H�t,x�dx � 0

and it follows at once that the zero solution of Eq. �5.10� is
stable.

As a final way of looking at the same things, we follow
the procedure, already discussed in Ref. �5�, in which the
vector field z is assumed to be harmonic in space and time,
and so proportional to exp�i�t− ikx�. However, we must be-
gin by defining the most general class of transformations that
could arise realistically in our analysis of Eqs. �5.18� and
�5.19�.

C. Problem of stability

In order to gain a deeper understanding of the variable
transformation approach, we insert the two parameters �2
and �3 into Eq. �4.20�,

�ty = − Q0�xy − �Q1�x
2y − �2�2Q2�x

3y − �3�3Q3�x
4y ,

�5.18�

setting Q=0 and assuming that Q0 ,Q1 ,Q2 ,Q3 are given by
Eqs. �4.14� and �4.15�. The domain of stability For Eq. �5.18�
is as follows:

�2 � 0, �3 � 0.

If �2�0 or �3�0, since then either �2h2 or −�3�3 is negative
semidefinite, this equation possesses an unstable zero solu-
tion and appears to be inconsistent with thermodynamics.

After making the change in variable from y to z and neglect-
ing the terms of order higher than cubic in �, we find

�tz = − R0�xz − �R1�x
2z − �2R2�x

3z − �3R3�x
4z , �5.19�

where

R0 = Q0, R1 = Q1 + Y1Q0 − Q0Y1,

R2 = �2Q2 + Y2Q0 − Q0Y2 − �Y1Q0 − Q0Y1�Y1 + Y1Q1 − Q1Y1,

R3 = �3Q3 + Y3Q0 − Q0Y3 − �Y1Q0 − Q0Y1��Y2 − Y1
2� + Y2Q1

− Q1Y2 + �2�Y1Q2 − Q2Y1� − �Y1Q1 − Q1Y1�Y1

− �Y2Q0 − Q0Y2�Y1. �5.20�

Assume that z�t ,x� decays fast enough if �x�→�. Using the
notation

�1 ª − h0R1 − �h0R1�T, �2 ª h0R2 − �h0R2�T,

�3 ª − h0R3 − �h0R3�T, �5.21�

where h0 takes form �4.18�, and setting

H ª zTh0z, � ª − ���xz�T�1�xz + �3��x
2z�T�3�x

2z ,

we verify that Eq. �5.19� is stable and satisfies the H theorem

d

dt
	

R
H�t,x�dx = 	

R
��t,x�dx � 0

if and only if �3�0 and

�1 � 0, �2 = 0. �5.22�

The most general solution of Eq. �5.22� is

Y1 = �
�n + 1�a

n + 2

3�n + 1�2�

n + 2

n�d + 9��
3�n + 2�

�n + 1�b
n + 2

� ,

Y2 = �
�n − 1��
n�n + 2�

r

s
�n − 1��
n�n + 2�

� , �5.23�

where

0 � d � 1, �a,b,�,r,s,�� � R6, �5.24a�

� = − �2 + � +
3

5
�n + 1��n + 3�� �5.24b�

+
2�n − 1��1 − d�d

n + 2
+

3�n + 1��a2 − b2 − 2n�d�
n + 2

,

�5.24c�

so that the problem of finding the stable and entropy-
consistent equation reduces to the problem of finding the
matrix Y3 such that �3�0. We can assume without any loss
of generality that
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Y3 = 
 �1 �n + 1��� + �2�
n�2/�n + 2� �1 + �1

� , �5.25�

where �� ,�1 ,�1 ,�2� are arbitrary constants. Let �3�ij� be the
�i , j� entry of �3. Then, from Eqs. �5.20� and �5.21�,

�3 = ��3�11� �3�12�

�3�12�
4�n − 1�

n + 2
d�3 −

�n + 1�2

n
�3�11� � .

When �3�0, since d�0, the condition �3�0 gives nothing;
but �3�0, Eq. �5.12�,

0 � d � 1, � = − �2 +
2�n − 1��1 − d�d

n + 2
, �5.26�

and Eq. �5.25� lead to

�3 = �−
2n2�

�n + 1�2 0

0
4�n − 1�d�3

n + 2
+ 2n��

and

0 � � �
2�n − 1�d��3�

n�n + 2�
. �5.27�

We can say that if �2�0, there exists a possibility for restor-
ing stability, but only for �3�0. As previously, therefore, the
rest state is unstable when �3�0.

We continue and conclude this section by giving some
indication of the way in which similar results can also be
obtained from the standard Fourier analysis of Eq. �5.19�. In
order to deal with plane waves, we make the perturbation
vector z harmonic in space and time, and represent it by a
complex amplitude zk with factor exp�i�t− ikx� assumed, as
usual. Then Eq. �5.19� can be written as

��I − X − iY�zk = 0,

where

X ª k�R0 − �2k2R2�, Y ª − �k2�R1 − �2k2R3� .

Let the dispersion relation

det��I − X − iY� = 0

be regarded as an equation for � in terms of k�R. We obtain
the quadratic equation

�2 − �A + iB�� + C + iD = 0

and the minimum we need to know is that �A ,B ,C ,D� are
the real functions of k and that B is related to the traces of R1
and R3 by

B = − �k2 Tr�R1� + �3k4 Tr�R3� . �5.28�

Since the trace of the matrix R3 is invariant under a set of all
transformations,

Tr�R3� = Tr�Q3� = −
2�n − 1�
n�n + 2�

d�3,

Eq. �5.28� simplifies to

B = − �k2 Tr�R1� −
2�n − 1�
n�n + 2�

�3k4d�3. �5.29�

The imaginary part of � appears in the form

Im��� =
1

2
�B � ��A2 + B2 − A� , �5.30�

where

A ª

1

2
�A2 − B2 − 4C�, B ª AB − 2D .

Stability requires Im����0, i.e.,

B � 0, B � ��A2 + B2 − A .

If �k�→�, the right-hand side of Eq. �5.29� is given essen-
tially by the second term. This term is negative or positive
according as �3 is positive or negative, thereby implying that
the rest state is unstable when �3�0. For �3�0, on the other
hand, using

Tr�R1� = Tr�Q1� = −
2�n − 1�
n�n + 2�

,

we have B�0. In this case, the H theorem for Eq. �5.19�
provides a hint on what to do next. This hint is just a way of
suggesting what the most general class of entropy-consistent
transformations is.

We first consider the second-order approximation to Eq.
�5.19�,

�3 = 0, B =
2�n − 1�
n�n + 2�

�k2,

assuming for simplicity that �2= �1. With the help of Eqs.
�5.23� and �5.24�, and

a = b = r = s = � = � = 0,

the calculation of A and B is relatively easy and when it is
completed Eq. �5.30� is

Im��� =
1

2

B ���Ek2 −

1

2
B2� − 
Ek2 −

1

2
B2�� ,

where

E = 1 +
1

4
�2�2k2 +

1

256
�2�2 − d + d2�2�4k4, �5.31a�

if n=2 and

E =
2

3
+

8

45
�2�2k2 +

8

16 875
�5�2 − 4d + 4d2�2�4k4,

�5.31b�

if n=3. Let 0�d�1. Writing Eq. �5.31� in the form
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E = A�4k4 + �2B�2k2 + C ,

we verify that A�0, B�0, and C�0. We also verify that if
�2=−1, then B2−4AC�0. Ultimately, therefore, E�0 and
this implies Im����0. Equation �5.18� with �2=−1 and
�3=0 is unstable. The transformed equation is stable regard-
less of the sign of �2.

Finally, we observe that a very similar analysis applies to
the case �3�0. Without entering into detailed calculations
and by relying on structural arguments alone, it will be seen
from Eqs. �5.12� and �5.25�–�5.27�, and

�1 = �1 = �2 = 0,

that

B = 0, A +
1

2
B2 � 0.

By Eq. �5.30� we then have Im����0. Thus, the zero solu-
tion of Eq. �5.19� is stable when �3�0.

VI. EXISTENCE AND ASYMPTOTIC STABILITY

We consider the following initial-boundary value prob-
lem:

z1,t = − b1z2,x + a1z1,xx in �a,b� � �0,T� , �6.1a�

z2,t = − b2z1,x + a2z2,xx in �a,b� � �0,T� , �6.1b�

zi�x��a,b� = 0, i = 1,2, on �0,T� , �6.1c�

zi�t=0 = zi0, i = 1,2, in �a,b� , �6.1d�

where �a ,b��R is an interval and a1, a2, b1, and b2 are
positive constants. With the choice

a1 =
��n + 1�d
3�n + 2�

, a2 =
��n + 1��1 − d�

3�n + 2�
, 0 � d � 1,

�6.2a�

b1 =
n + 1

n
, b2 =

1

n + 1
, �6.2b�

provided that Y1 is defined by Eq. �5.12�, this problem is
equivalent to the initial-boundary value problem for Eq. �5.1�
with p=1. Introducing the new variables

u1 = �b2z1, u2 = �b1z2,

problem �6.1� takes the form

u1,t = − �b1b2u2,x + a1u1,xx in �a,b� � �0,T� , �6.3a�

u2,t = − �b1b2u1,x + a2u2,xx in �a,b� � �0,T� , �6.3b�

ui�x��a,b� = 0, i = 1,2, on �0,T� , �6.3c�

ui�t=0 = ui0, i = 1,2, in �a,b� , �6.3d�

where u10=�b2z10 and u20=�b1z20.

Lemma 6.1. Assume that u= �u1 ,u2� is a sufficiently
smooth solution to Eq. �6.3�. Then the decay estimate

	
a

b

�u1
2 + u2

2�dx � e−2c1a�t	
a

b

�u10
2 + u20

2 �dx �6.4�

holds, where c1 is the constant from the Poincaré inequality
and a�=min�a1 ,a2�.

Proof. Multiplying Eq. �6.3a� by u1, Eq. �6.3b� by u2, and
adding the results yield

1

2

d

dt
�u1

2 + u2
2� = − �b1b2�u1u2�,x + a1u1,xxu1 + a2u2,xxu2.

�6.5�

Let

H =
1

2
�u1

2 + u2
2�, � = �b1b2u1u2 − a1u1,xu1 − a2u2,xu2,

� = − �a1u1,x
2 + a2u2,x

2 � .

Then Eq. �6.5� assumes the form of conservation law

H,t + �,x = � , �6.6�

with energy H, flux �, and dissipation �. Integrating Eq.
�6.6� over �a ,b� and using the boundary conditions give

1

2

d

dt
	

a

b

�u1
2 + u2

2�dx = − 	
a

b

�a1u1,x
2 + a2u2,x

2 �dx . �6.7�

In view of the Poincaré inequality

c1	
a

b

ui
2dx � 	

a

b

ui,x
2 dx, i = 1,2,

and for a�=min�a1 ,a2�, Eq. �6.7� implies

1

2

d

dt
	

a

b

�u1
2 + u2

2�dx � − c1a�	
a

b

�u1
2 + u2

2�dx . �6.8�

Integrating Eq. �6.8� with respect to time and employing the
initial conditions yield Eq. �6.4�. This concludes the proof. �

Integrating Eq. �6.7� with respect to time, we obtain the
energy estimate

1

2
	

a

b

�u1
2 + u2

2�dx + a�	
0

t

dt�	
a

b

�u1,x
2 + u2,x

2 �dx

�
1

2
	

a

b

�u10
2 + u20

2 �dx, t � �0,T� . �6.9�

Inequality �6.9� suggests that existence of weak solutions can
be proved.

Definition 6.2. By a weak solution to problem �6.3� we
mean the function u= �u1 ,u2� satisfying the integral identity
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0

T

dt	
a

b

�u1
1,t + u2
2,t�dx

− 	
0

T

dt	
a

b

�a1u1,x
1,x + a2u2,x
2,x�dx

− �b1b2	
0

T

dt	
a

b

�u2,x
1 + u1,x
2�dx

+ 	
a

b

�u10
10 + u20
20�dx = 0, �6.10�

which holds for any 
= �
1 ,
2��W2
1,1��a ,b�� �0,T�� such

that 
 �x��a,b�=0, 
 �t=T=0, where 
i0=
i �t=0, i=1,2.
Remark 6.3. For the reader’s convenience, the space

W2
1,1��a ,b�� �0,T�� and other spaces which we use here are

defined in the Appendix. See also Refs. �25,26�.
Lemma 6.4. Assume that u0= �u10,u20��L2�a ,b�. Then

there exists a weak solution to problem �6.3� such that
u= �u1 ,u2��V2

0��a ,b�� �0,T�� and the estimate

�u�V2
0��a,b���0,T�� � c�u0�L2�a,b� �6.11�

is valid.
Proof. We prove the existence by the Galerkin method, so

we are looking for approximate solutions in the form

ui
n = �

k=1

n

uik
n �t�ek�x�, i = 1,2, �6.12�

where �ek� is a basis in H0
1�a ,b�. Then uik

n �t� are solutions to
the following system of ordinary differential equations:

d

dt
u1k

n = − �b1b2�
l=1

n

u2l
n 	

a

b

el,xekdx − a1�
l=1

n

u1l
n 	

a

b

el,xek,xdx ,

�6.13a�

d

dt
u2k

n = − �b1b2�
l=1

n

u1l
n 	

a

b

el,xekdx − a2�
l=1

n

u2l
n 	

a

b

el,xek,xdx ,

�6.13b�

where we have assumed that �el ,ek�L2�a,b�=�lk. Since Eq.
�6.13� is a system of ordinary linear equations with constant
coefficients, we have the existence of solutions, so there ex-
ists an approximate solution, namely, solution �6.12�, which
satisfies energy inequality �6.9� and integral identity �6.10�.
Hence, after an appropriate passing with n→�, we obtain
the existence of weak solutions to Eq. �6.3� satisfying inte-
gral identity �6.10� and estimate �6.11�. This concludes the
proof. �

The proof of lemma 6.4 is sketched out. For more details,
see Ladyzhenskaya et al. ��25�, Chap. 3�.

Finally, we increase regularity of weak solutions to get
classical solutions of Eq. �6.3�. The proof is also sketched
�see Ref. �25��.

Lemma 6.5. Assume that u0�H3�a ,b�. Then there exists a
solution to problem �6.3� such that u�W2

4,2��a ,b�� �0,T��
and the estimate

�u�W2
4,2��a,b���0,T�� � c�u0�H3�a,b� �6.14�

holds.
Proof. From the existence of the weak solution and esti-

mate �6.11� we have that u,x�L2��a ,b�� �0,T��. Now we
consider the parabolic problem

u1,t − a1u1,xx = − �b1b2u2,x in �a,b� � �0,T� ,

�6.15a�

u2,t − a2u2,xx = − �b1b2u1,x in �a,b� � �0,T� ,

�6.15b�

ui�x��a,b� = 0, i = 1,2, on �0,T� ,

ui�t=0 = ui0, i = 1,2, in �a,b� .

Since u,x�L2��a ,b�� �0,T��, we assume additionally that
u0�H1�a ,b�. Then there exists a solution to problem �6.15�
such that u�W2

2,1��a ,b�� �0,T�� and the estimate

�u�W2
2,1��a,b���0,T�� � c�u0�H1�a,b�

holds. By imbedding we have that u,x�W2
1,1/2��a ,b�

� �0,T�� and

�u,x�W2
1,1/2��a,b���0,T�� � c�u�W2

2,1��a,b���0,T��.

Then the right-hand side of Eq. �6.15� belongs to
W2

1,1/2��a ,b�� �0,T��. Next, assuming that u0�H2�a ,b�, we
have the existence of solutions to Eq. �6.15� such that
u�W2

3,3/2��a ,b�� �0,T�� and the estimate

�u�W2
3,3/2��a,b���0,T�� � c�u0�H2�a,b� �6.16�

is valid. From Eq. �6.16� it follows that
u,x�W2

2,1��a ,b�� �0,T��, so the right-hand side of Eq. �6.15�
belongs to W2

2,1��a ,b�� �0,T��. Hence for u0�H3�a ,b�
there exists a solution to problem �6.15� such that
u�W2

4,2��a ,b�� �0,T�� and

�u�W2
4,2��a,b���0,T�� � c�u0�H3�a,b�.

This concludes the proof. �
Remark 6.6. From Eq. �6.14� we have that

u,t ,u,xx�C�,�/2��a ,b�� �0,T��, where ��1 /2. Hence our
initial-boundary value problem has a classical solution.

The conclusions are as follows. The system comprised of
Eqs. �6.1a�, �6.1b�, and �6.2� is parabolic. This system was
derived from Eq. �5.1� by setting p=1 and using Eqs. �5.12�
and �5.13�. Equation �4.7� with p=1 corresponds to the spe-
cial case d=0. The cases d=0 and d=1 are interesting in that
the mathematical structure of the model changes significantly
�from parabolic type to a mixed hyperbolic-parabolic type�
and existence of solutions is by no means obvious. Put some-
what differently, it is not clear how to formulate conditions
on the problem data such that the existence and uniqueness
of classical solutions is guaranteed. When d� �0,1�, problem
�6.1� has a unique classical solution with the following extra
property:
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n

�n + 1�2	
a

b

�z1
2 + z2

2�dx � e−2c1a�t	
a

b

�z10
2 + z20

2 �dx ,

t � �0,T� ,

where T�0 is arbitrary and

a� = ���n + 1�d/�3�n + 2�� if d � 1/2,

��n + 1��1 − d�/�3�n + 2�� if d � 1/2.
�

In the class of solutions subject to conditions �6.1c� and
�6.1d�, this implies that the zero solution of Eqs. �6.1a� and
�6.1b� is asymptotically stable �in fact, exponentially stable�.
Note that �a

b�z1
2+z2

2�dx is the Lyapunov functional for Eqs.
�6.1a� and �6.1b�. The method of Lyapunov, which played an
important role in the stability theory of ordinary differential
equations, has been extended to a number of problems de-
scribed by partial differential equations �27�. Here this
method was used to prove some results on the well posed-
ness of parabolic systems arising in the variable transforma-
tion approach.

Equation �5.1� with p=2 is not parabolic. The Chapman-
Enskog expansion of Eq. �3.5� does not lead to parabolic
equations when p=1,2. In order to derive the parabolic sys-
tem, it was necessary to assume that p=1 and subsequently
use the method of transformations of variables.

ACKNOWLEDGMENTS

This investigation was conducted within the framework of
a scientific research project, N N501 0074 33, financed by
the Polish Ministry of Science and Higher Education under
Contract No. 0074/B/T02/2007/33.

APPENDIX: SOME USEFUL SPACES

By W2
k,l��a ,b�� �0,T��, k , l�N0=N� �0�, we denote a

space of functions with the finite norm

�u�W2
k,l��a,b���0,T�� = 
�

��k
	

0

T

dt	
a

b

dx��x
�u�t,x��2

+ �
��l
	

0

T

dt	
a

b

dx��t
�u�t,x��2�1/2

.

We set L2��a ,b�� �0,T��=W2
0,0��a ,b�� �0,T�� and define

V2
0��a ,b�� �0,T�� as a space with the finite norm

�u�V2
0��a,b���0,T�� = ess sup

t��0,T�
�u�· ,t��L2�a,b� + ��u�L2��a,b���0,T��,

where L2�a ,b� is the space consisting of all functions that are
square integrable on �a ,b�. By �· , ·�L2�a,b� we denote the sca-
lar product in L2�a ,b�. We do not distinguish between scalar-
and vector-valued functions and their corresponding norms.
We denote by W2

k�a ,b� the space having the norm

�u�W2
k�a,b� = 
�

��k
	

a

b

dx��x
�u�2�1/2

.

The spaces Hk�a ,b� and H0
k�a ,b� are defined as follows:

Hk�a,b� � W2
k�a,b�, H0

k�a,b� � �u � Hk�a,b�;u�x��a,b� = 0� .

Next, we introduce spaces appropriate for parabolic equa-
tions. By W2

l,l/2��a ,b�� �0,T��, l odd, we mean a Hilbert
space with the norm

�u�W2
l,l/2��a,b���0,T��

= 
�
��l
	

0

T

dt	
a

b

dx��x
�u�2 + �

���l/2�
	

0

T

dt	
a

b

dx��t
�u�2

+ 	
0

T

dt�	
0

T

dt�	
a

b

dx
��t�

�l/2�u�t�,x� − �t�
�l/2�u�t�,x��2

�t� − t��2 �1/2

.

Here �l /2� means the largest integer less than or equal to l /2.
Finally, we denote by C�,�/2, �� �0,1�, the space of Hölder
continuous functions on �a ,b�� �0,T�. This space is
equipped with the norm

�u�C�,�/2 � max
t,x

�u�t,x�� + max
t,x�,x�

�u�t,x�� − u�t,x���
�x� − x���

+ max
t�,t�,x

�u�t�,x� − u�t�,x��
�t� − t���/2 .

Note that C�,�/2 is a Banach space.
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